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b Psychobiology Laboratory, Department of Psychology, University of Oviedo, Plaza Feijóo, s/n, E-33003 Oviedo, Spain
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In this paper, we present a computer program written in version 9.1 of SAS’ interactive

matrix language in order to implement a new approach for analyzing repeated measures

data. Previous studies reported that the new procedure is as powerful as conventional solu-

tions and generally more robust (i.e., insensitive) to violations of assumptions that underlie

conventional solutions. The program also included a step-wise procedure based on the Bon-

ferroni inequality to test comparisons among the repeated measurements. Both univariate

and multivariate repeated measures data can be analyzed. Finally, the application of the

SAS/IML program is illustrated with a numeric example.
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. Introduction

epeated measures designs are used extensively in epidemi-
logy, psychology, neuropsychology, psychopharmacology,
nd other research areas [1–3]. In many repeated measures
esigns, especially those employed in clinical studies, the
ata are collected from N subjects forming J independent
roups over K occasions or trials or under different experi-
ental conditions. Several methods have been proposed to

nalyze such designs, many of which can be implemented
sing widely available standard statistical packages such as
AS, S-PLUS, or SPSS. When the variances of all pair-wise
ifferences among levels of the repeated measures factor are
qual (i.e., sphericity) and this constant variance is the same

or all levels of the between-subjects grouping factor (jointly,
hese two assumptions have been referred to as multisample
phericity; see [4] for details), it is well known that the con-
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ventional univariate (or mixed-model of Scheffé) approach
provides the most powerful tests. If sphericity fails to hold
but the covariance matrices are homogeneous, the resulting
data can be analyzed by either a univariate model with Box’s
epsilon (ε) correction for degrees of freedom (d.f.; [5]) or a
full multivariate model. The empirical literature indicates,
however, that both tests are sensitive to departures from
the assumptions of multivariate normality and multisample
sphericity, particularly when group sizes are unequal [6].

To counteract the negative impact of the violation of mul-
tisample sphericity on the type I error rates, diverse solu-
tions have been proposed. Algina and Oshima [7] suggest
using the improved general approximation (IGA) test devel-
proposed a Welch–James (WJ) type test derived by Johansen
[9]. Based on the power results presented by Algina and Kesel-
man [10], the WJ test may be preferred over the IGA test,

erved.
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provided that sample size are sufficiently large to obtain a
robust WJ test. Nevertheless, when the sample size is small
and the data are not extracted from normal distributions,
the WJ approach does not adequately control the type I error
rate for a test of the groups × trials interaction, commonly the
most interest test for researchers. For their part, Vallejo and
Livacic-Rojas [11] compared the behaviour of a multivariate
extension of the Brown and Forsythe (BF; [12]) procedure [13]
with that of a mixed model based on covariance structures
selected by means of information criteria such as Akaike’s
information criterion [14] and Bayesian information criterion
[15] when normality and covariance assumptions were vio-
lated. Their simulation studies showed that the BF approach
performed as well or better than its competitor, in terms
of control of type I error rates, particularly with small sam-
ple sizes and unstructured covariance matrices. For tests of
the interaction, however, the BF rates were conservative for
the negatively paired conditions of group size and covariance
matrices—particularly when the sample sizes was small and
the degree of group size inequality was substantial.

However, in a recent article, Vallejo and Ato [16] showed
that a typically robust test for the interaction effect may be
obtained by modifying BF’s approach (referred to as modified
BF test hereafter, MBF). In order to obtain better type I error
control with the BF procedure, Vallejo and Ato, used the d.f.
correction proposed by Krishnamoorthy and Yu [17] instead
of the correction suggested by Nel and van der Merwe [18],
which was used in the previous d.f. formulation provided by
Vallejo et al. [13]. The procedure due to Vallejo and Ato, in addi-
tion to being more robust than that provided by Vallejo et al.,
is improved in other two aspects. First, the approximate error
d.f. are invariant to linear transformations of outcome vari-
ables. Consequently, the p values for testing H01:A1� = 0 will
not be different from those for testing H02:A2� = 0, by a change
of scale of the elements of A, where A is a known matrix of
contrasts with appropriate size and � is the K-variate location
parameter. Second, the new approximate error d.f. always are
positive, which is not so clearly the case on applying Nel and
van der Merwe’s solution.

Therefore, the purpose of this article is to extend the MBF
procedure to produce focused tests statistics and to make
available a program written in the SAS/IML language [19] in
order to obtain numerical results. Besides to facilitate the
access to this robust method, developing this program within
SAS provides an opportunity to utilize other statistical pro-
cedures of this system widely used nowadays. In Sections 2
and 3, we present the modified BF method and code required
for the program, along with instructions on its use, for test-
ing omnibus effects and multiple contrast hypotheses related
to these effects. In Section 4 we use the data from a study
reported by Fitzmaurice et al. [20] to illustrate the application
of the computer program with MBF procedure. Finally, some
concluding remarks are given in Section 5.

2. Definition of test statistic
Let yijk, i = 1, . . ., nj; j = 1, . . ., J; k = 1, . . ., K, be the response for the
ith subject in the jth group at the kth trial, and let yij = (yij1, . . .,
yijK)′ be the random vector of responses associated with the
b i o m e d i c i n e 8 3 ( 2 0 0 6 ) 169–177

ith subject in the jth group
(∑

j
nj = N

)
. Then, by stacking the

subvectors y′
11, . . . , y′

NJ, a general linear model for univariate
repeated measures can be written as

Y = XB + U, (1)

where Y is the N × K matrix of observed data, B is the J × K
matrix that contains the unknown fixed effects to be esti-
mated from the data with known design matrix X and U
is the N × K matrix of unknown random errors. The model
assumes that the random vector yij are normally and indepen-
dently distributed within each level j, with mean vector �j and
variance–covariance matrix �j. The unbiased estimators of �j

are �̂j = (1/nj − 1)Ej, where Ej = Y′
jYj − �̂′

jX
′
jYj are distributed

independently as Wishart WK(nj − 1, �j) [21]. We also assume

that nj − 1 ≥ K so that �̂
−1
j exists with probability one.

2.1. Modified BF procedure

Let us consider the problem of finding a transformation F
for the common multivariate criteria when homogeneity of
covariance matrices is not a tenable assumption, with the
aim of testing hypotheses of the form H0:CBA = 0 using the
MBF approach, where C is the (J − 1)×J matrix which defines
a set of (J − 1) linearly independent contrasts for the between-
groups factor and A is a K × (K − 1) matrix which defines a set of
(K − 1) linearly independent contrasts for the within-subjects
factor. The new invariant solution is obtained by modifying
the approximate d.f. proposed by Vallejo et al. [13]. The statis-
tics used to test the hypothesis concerning to the interaction
effect using the MBF approach, are functions of the eigenval-
ues of HE*−1, where the hypothesis matrix is

H = (CB̂A)′[C(X′X)−C′]
−1

(CB̂A), (2)

and the error matrix is

E∗ =
(

�∗
e

�∗
h

) J∑
j=1

c•
j A′(�1/2Q̂j�

1/2)A. (3)

In Eq. (3), �∗
e and �∗

h denote the approximate d.f. for matri-
ces E* and H, respectively; c•

j
= 1 − (nj/N), cj = nj/N, Q̂j =

(�−1/2�̂j�
−1/2), � = (c•

1�1 + · · · + c•
J �J), and �1/2 denotes the

square root of the matrix �. Notice that the error matrix in Eq.
(3) is equivalent to Eq. (12) in Vallejo et al. [13] paper, since,
by assumption, � is a positive definite matrix. Then, exist
�1/2 and �−1/2 such that �1/2�1/2 = � and �−1/2�−1/2 = �−1

and that �1/2�−1/2 = IK, where IK is the identity matrix. To
find the d.f. associated with E*, first, the sum

∑J

j=1c•
j
A′QjA(=

c•
1A′Q1A + · · · + c•

J A′QJA) is approximated as

J∑
c•

j A′QjA ∼ WK

⎛
⎝f ∗

e ,
1
f ∗
e

J∑
c•

j A′QjA

⎞
⎠ . (4)
Then, proceeding in a fashion similar to Nel [21] and Nel
and van der Merwe [18], the parameter will be found equating
the first two moments of

∑J

j=1c•
j
A′QjA, namely c•

j
A′QjA and
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J

j=1(nj − 1)−1(c•
j
A′QjA)2, to those of WK(f ∗, A′QA). It follows

hat the quantity f ∗
e is given by

∗
e =

tr2
(∑J

j=1c
•
j
A′QjA

)
+ tr

(∑J

j=1c
•
j
A′QjA

)2

∑J

j=11/(nj − 1)[tr2(c
•
j
A′QjA) + tr(c

•
j
A′QjA)

2
]
, (5)

here tr(·) stands for the trace of the matrix. In turn,
sing the so-called multivariate Satterthwaite’s approxima-
ion described by Vallejo and Ato [16] in the Appendix, the
uantity f ∗

h is given by

∗
h=

tr2
(∑J

j=1c•
j
A′QjA

)
+ tr

(∑J

j=1c•
j
A′QjA

)2

∑J

j=1{V}+tr2
(∑J

j=1cjA
′�̂j �̂

−1
A
)

+tr
(∑J

j=1cjA
′�̂j �̂

−1
A
)2

,

(6)

here V = [tr2(A′�̂j�̂
−1

A) + tr(A′�̂j �̂
−1

A)
2
] − 2cj[tr2(A′�̂j �̂

−1

) + tr(A′�̂j �̂
−1

A)
2
].

In Eqs. (5) and (6), the numerator can be simpli-
ed to tr(I2

K−1) + [tr(IK−1)]2, given that transforming �j to
−1/2�j�

−1/2, A′QA → IK−1. Therefore, replacing Qj in Eqs. (5)

nd (6) by its estimate �̂
−1/2

�̂j�̂
−1/2

and using the result that
r(AB) = tr(BA), the approximate d.f. simplifies to

∗
e = (K − 1) + (K − 1)2∑J

j=11/(nj − 1)[tr2(c•
j
A′�̂j�̂

−1
A) + tr(c•

j
A′�̂j�̂

−1
A)

2
]
, (7)

nd

∗
h= (K − 1) + (K − 1)2

∑J

j=1{V}+tr2
(∑J

j=1cjA′�̂j �̂
−1

A
)

+tr
(∑J

j=1cjA′�̂j �̂
−1

A
)2

.

(8)

The result in Eqs. (7) and (8) has considerable theoreti-
al appeal because, as Krishnamoorthy and Yu [17] show, in
ddition to being invariant under any nonsingular transfor-
ation, lies between min{nj − 1} and N − J for all cjA

′�̂jA and

j − 1 ≥ K − 1. Therefore, the approximate d.f. never could be
egative, while this not the case with Nel and van der Merwe’s
olution.

There are several multivariate test statistics for testing the
ull hypothesis of no interaction between groups by trials.
he most common ones are the Wilks’ [22] �-criterion, the
otelling–Lawley trace, and the Pillai–Bartlett trace statistics.
lthough their critical values have been widely tabled and
harted (see [23]), in practice it is usual to obtain the level
f significance by defining each of these statistics in terms
f an F-variable [24–27]. In the two-group case, all the F-test
pproximations are interchangeable. For our purpose, the F-
pproximation of Wilks’ � due to Rao [24] is chosen as the
ultivariate test statistic. According to this transformation,
he interaction null hypothesis is rejected if

∗
MBFI

= 1 − �1/s∗

�1/s∗

(
�∗

2

�∗
1

)
≥ F1−˛(�∗

1, �∗
2), (9)
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where � = det(E*)/det(H + E*), s∗ = [(l2�∗2
h − 4)/(l2 + �∗2

h − 5)]
1/2

,

�∗
1 = l�∗

h, and �∗
2 = [�∗

e − (l − �∗
h + 1)/2 ]s∗ − (l�∗

h − 2)/2; here, det(·)
denotes the determinant of the matrix.

If the null hypothesis of no interaction between groups and
trials is rejected, the interpretation of tests of main effects is
insufficient to understand the information of the data. When
this occurs, test of possible 2 × 2 interactions (interaction con-
trasts or tetrad contrasts) can be used [28–31]. Under depar-
tures from the assumption of covariance homogeneity, tetrad
contrasts results are obtained easily using the MBF procedure
with appropriate A and C contrast matrices. Specifically, to test
interaction contrasts using MBF approach, C = cjj′ and A = akk′ ,
where cjj′ is a 1 × J vector of coefficients that contrasts the jth
and j′th between-subjects means and akk′ is a K × 1 vector of
coefficients that contrasts the kth and k

′
th within-subjects

means. It is important to mention, as a reviewer indicates,
that it is not necessary that the omnibus F-test be significant
prior to testing planned (i.e., the contrasts are determined on
before the data are collected) tetrad contrasts, provided the
type I error rate is controlled. Contemporary practice favors
adopting the family of contrasts as the conceptual unit for
control of the type I error rate.

To control the family-wise error rate (FEW) for all possible
2 × 2 interactions, several post hoc procedures may be used.
For instance, Lix and Keselman [31] found that the Hochberg
[32] step-up Bonferroni, Schaffer [33] modified sequentially
rejective Bonferroni, and Studentized maximum modulus crit-
ical value [34] procedures used in combination with Johansen’s
[9] procedure are largely robust to departures from multi-
sample sphericity. Nevertheless, only the Hochberg procedure
will be considered in this article. We selected the Hochberg
step-up Bonferroni procedure over the Shaffer and studen-
tized maximum modulus approaches because Lix and Kesel-
man [31] found minimal power differences between them and
because is very simple to apply. With Hochberg’s [32] method,
the p values corresponding to the r tests statistics for testing
the hypotheses H1, . . ., Hr are rank ordered, where r = J* × K*,
J* = J × (J − 1), and K* = K × (K − 1). Then, the largest probability
is compared to ˛FEW, where ˛FEW is the family-wise error rate
the researcher is willing to tolerate. If pr ≤ ˛FEW, all hypotheses
are rejected without further test; otherwise, the next largest
probability is compared to ˛FEW/2. If pr−1 ≤ ˛FEW/2, all hypothe-
ses H1, . . ., Hr−1 are rejected. Continuing in this fashion, at any
stage q, reject all Hq where q′ ≤ q, if pq ≤ ˛FEW/(r − q + 1) for any
q = r, r − 1, . . ., 1.

As before, the test used for checking the effect of the tri-
als with unweighted means is given by the determinant of
Ẽ(H̃ + Ẽ)

−1
, where

H̃ = (CB̃A)′[C(X′X)−C]
−1

(CB̃A), (10)

and

Ẽ =
(

�•
e

�•
h

) J∑
n−1

j
A′(�1/2Q̂j�

1/2)A , (11)
j=1

where A was defined before, B̃ =
[∑J

j=1(1/nj)
]1/2

B̂, C ≡ c is a

(J × 1) vector consisting of all ones, � = (�1/n1 + · · · + �p/nJ),
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and �•
h = 1. Extending the results reported by Krishnamoorthy

and Yu [17] and Nel and van der Merwe [18], the distribution
of

∑J

j=1n−1
j

A′QjA can be approximated as a sum of Wishart
distributions:

∑J

j=1
n−1

j
A′QjA ∼ SWK

⎛
⎝f •

e ,
1
f •
e

J∑
j=1

n−1
j

A′QjA

⎞
⎠ , (12)

where the quantity f •
e is given by

f •
e =

tr2
(∑J

j=1n−1
j

A′QjA
)

+ tr
(∑J

j=1n−1
j

A′QjA
)2

∑J

j=11/(nj − 1)[tr2(n−1
j

A′QjA) + tr(n−1
j

A′QjA)
2
]
. (13)

Replacing Qj in Eq. (13) by its unbiased estimate

�̂
−1/2

�̂j�̂
−1/2

the approximate d.f. can be written as

�•
e = (K − 1) + (K − 1)2∑J

j=11/(nj − 1)tr2(n−1
j

A′�̂j�̂
−1

A) + tr
(

n−1
j

A′�̂j�̂
−1

A
)2

.

(14)

The simplification at the Eq. (14) occurs because
A′QA → IK−1. For the main effect of trials averaged over
the groups, all the F-test approximations are interchangeable.
According to the adaptation of the Rao [24] transformation,
the main effect of trials null hypothesis is rejected if

F∗
MBFK

= 1 − �1/s

�1/s

(
�•

2

�•
1

)
≥ F1−˛(�•

1, �•
2), (15)

where � = det(Ẽ)/det(H̃ + Ẽ), s = [(l2�•2
h − 4)/(l2 + �•2

h − 5)]
1/2

,

�•
1 = l�•

h, and �•
2 = [�•

e − (l − �•
h + 1)/2]s − (l�•

h − 2)/2.

In turn, using the Mehrotra [35] extension of the univariate
Brown–Forsythe test applied to the sum of the within-subject
variables, the test statistic for testing the effect of the groups
is given by determinant of E•(H + E•)−1, where the hypothesis
matrix is defined as in Eq. (2) with A ≡ a (i.e., a K × 1 vector with
each element equal to one), the error matrix is

E• =
(

�•
e

�•
h

) J∑
j=1

cjA
′˙jA, (16)

and �•
e and �•

h are the approximate d.f. for E• and H, respec-
tively. The definition of the estimators referring to the d.f. as
it applies to the analysis of repeated measures can be found
in Vallejo and Ato [16]. Lastly, the null hypothesis referring to
the equality of the groups, weighted by means of the trials is
rejected if

FMBFJ = H
E•

(
�•

e

�•
h

)
≥ F1−˛(�•

h, �•
e). (17)
It should be noted that the matrices H and E• are identical
to the hypothesis and error sum of squares obtained employ-
ing a univariate Brown–Forsythe test with the numerator d.f.
corrected.
b i o m e d i c i n e 8 3 ( 2 0 0 6 ) 169–177

When there is no interaction and the assumption of mul-
tisample sphericity is not satisfied, the MBF approach also
may be applied to obtain robust multiple comparison pro-
cedures for examining all possible pair of groups and trials
comparison marginal means. To test between-subjects pair-
wise comparison hypotheses using MBF procedure, C = cjj′ and
A ≡ a. The significance of the pair-wise comparisons for the
within-subjects main effect can be probed in a similar man-
ner, but with C ≡ c (i.e., a 1 × J vector with each element equal
to one) and A = akk′ .

At present there are numerous simultaneous or sequen-
tial multiple comparison procedures that maintain the FEW
at or below its nominal ˛-level when the validity assumptions
of traditional statistics are satisfied (see [36]). However, when
normality and covariance homogeneity are not satisfied, the
number of procedures that remain relatively unaffected by
assumption violations it diminishes considerably. Results of
Keselman [37], Keselman and Lix [38], and Kowalchuk and
Keselman [39] suggest that the Welsch’s [40] step-up range,
Schaffer’s [33] sequentially rejective step-down Bonferroni,
and Hochberg’s [32] sequentially rejective step-up Bonferroni
procedures performed well in terms of control of type I error
rates and power to detect true pair-wise differences. There-
fore, the method used in the preceding paragraphs can be
applied to control the FWE.

3. Program description

To obtain numerical results for the MBF procedure described
in the previous section we developed a computational pro-
gram (available for download at http://gip.uniovi.es/gdiyad/
docume/macrosas01.pdf) written in the SAS/IML program-
ming language [19]. The program is presented as a set of
subroutines or modules and a driver. The subroutines are
OMNIRESULTS, GROUPTEST, TIMETEST, INTERACTEST, and
DEPVARTEST. They are run sequentially, and each of them
checks the conditions of application. The program calcu-
lates the MBF approximate solution for tests of the main
and interaction effects in repeated measures designs. In
addition, contrasts among marginal means or all possible
interaction contrasts (i.e., tetrad contrasts) can be obtained.
When we have a set of multivariate repeated measures data,
the program also can be used to test omnibus effects and
multiple comparison hypotheses related to these effects; both
separately for each dependent variable and simultaneously.
All of the F tests and the Hochberg adjusted p values are
calculate automatically by the program.

To implement the program it is assumed that the data
is entered in a SAS data set named DATARECORDED with
multivariate format. The hallmark feature of a univariate for-
mat is that each subject has multiple rows (or records)—one
for each measurement occasion, whereas the hallmark fea-
tures of a multivariate format is that each subject has only
one row (or record), regardless of the number of measure-
ments made. The program only requires that the user specifies

the number of dependent variables (NVD). A run statement
of the program generates as output F-statistics, along with
degree of freedom and significance levels for hypothesis test-
ing. The program also provides as output by default a step-wise

http://gip.uniovi.es/gdiyad/docume/macrosas01.pdf
http://gip.uniovi.es/gdiyad/docume/macrosas01.pdf
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Table 1 – Data of CD4 cell count per mm3 for 68 selected subjects from ACTGa study 193A

IDb Jc K1
d K2

d K3
d K4

d K5
d K6

d IDb Jc K1
d K2

d K3
d K4

d K5
d K6

d IDb Jc K1
d K2

d K3
d K4

d K5
d K6

d

0035 1 39 43 19 29 26 16 0229 2 31 31 38 38 26 19 1162 3 04 17 06 05 16 08
0056 1 05 05 01 02 01 01 0237 2 03 03 06 01 01 02 0084 4 11 05 13 14 19 09
0142 1 29 13 26 11 17 14 0259 2 48 122 65 50 22 16 0123 4 07 19 09 14 15 04
0150 1 44 17 18 30 14 05 0470 2 32 30 14 23 14 16 0134 4 31 29 31 44 19 35
0175 1 22 25 17 16 32 23 0499 2 14 49 19 16 19 20 0148 4 72 102 63 36 22 50
0215 1 06 09 02 06 01 04 0557 2 34 56 32 21 14 09 0261 4 29 94 115 80 67 89
0226 1 17 28 04 09 02 04 0596 2 80 60 50 70 60 40 0291 4 30 30 20 20 10 10
0227 1 55 37 39 27 24 31 0631 2 49 46 49 27 67 20 0325 4 10 30 10 10 10 10
0248 1 11 11 04 18 34 20 0658 2 36 45 32 35 15 17 0348 4 16 29 07 11 06 06
0264 1 32 169 49 33 18 26 0659 2 44 31 08 20 13 10 0377 4 28 33 23 20 19 12
0344 1 09 12 10 16 21 29 0882 2 50 90 130 120 80 90 0466 4 20 05 40 40 32 24
0482 1 10 19 07 07 06 10 0177 3 40 109 114 106 91 63 0484 4 39 70 52 54 40 25
0486 1 39 20 16 38 11 08 0247 3 42 21 110 51 30 23 0602 4 10 20 30 40 40 40
0597 1 20 10 10 10 10 10 0290 3 10 10 10 20 10 10 0609 4 15 160 130 150 100 90
0598 1 20 10 40 10 20 20 0324 3 02 10 40 50 50 80 0784 4 15 50 40 40 50 30
0603 1 20 30 20 20 30 20 0332 3 20 20 10 10 30 10 0799 4 10 21 06 04 16 20
0876 1 20 20 20 10 10 10 0393 3 13 64 93 84 99 81 0811 4 89 129 229 166 123 91
0881 1 55 10 10 20 10 10 0440 3 13 15 21 20 11 12 0867 4 30 50 30 10 10 10
0133 2 21 23 15 08 06 03 0456 3 16 108 80 29 20 26 0884 4 40 130 90 90 90 110
0161 2 28 62 72 65 121 62 0483 3 15 19 14 16 13 04 1015 4 30 161 213 145 138 162
0164 2 36 27 13 13 39 08 0570 3 33 53 107 86 111 130 1072 4 58 92 37 31 43 25
0191 2 37 28 33 46 33 27 0570 3 30 30 65 12 08 59 1131 4 06 20 30 53 06 21
0225 2 07 20 02 02 03 07 0953 3 30 100 146 97 63 26

a AIDS clinical trial group.
b Variable that identifies the subject to which the record refers.
c Levels of the between-subjects factor.
d Levels of the within-subjects factor.
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Table 2 – Summary of traditional univariate analysis

Hypotheses MSH
a MSE

b F-value d.f.c p-Value

Groups 15989.81 5152.97 3.20 (3, 64) 0.0327
Trials 3316.53 416.47 7.95 (5, 320) <0.0001
Groups × trials 1103.33 416.47 2.65 (15, 320) 0.0008

a Mean square for the hypothesis.

b Mean square for the error.
c Degrees of freedom.

procedure based on the Bonferroni inequality (i.e., Hochberg
method) to discover which linear combination of the means
or interaction contrasts have significant differences. However,
the user program can use several optional scalars (TESTOMNI,
TESTGROUPS, TESTTIME, TESTINTERAC, TESTDEPVAR), which
assume values of 0 or 1, for print the interest information.

4. Example and comparison with
traditional analysis of variance

The application of this procedure is illustrated using data
reported by Fitzmaurice et al. [20] from a study published by
Henry et al. [41] in the Journal of Acquired Immune Deficiency Syn-
dromes and Human Retrovirology. These authors discuss a ran-
domized, doubly blind, study to determine the relative clinical
efficacy of four different reverse transcriptase inhibitor ther-
apies in AIDS patients with advanced immune suppression
(CD4 counts of less than or equal to 50 cells per mm3). Specif-
ically, 1313 HIV-infected patients were randomized to one of
four daily regimens containing 600 mg of zidovudine: zidovu-
dine alternating monthly with 400 mg didanosine; zidovudine
plus 2.25 mg of zalcitabine; zidovudine plus 400 mg of didano-
sine; or zidovudine plus 400 mg of didanosine plus 400 mg
of nevirapine (triple therapy). The time to new HIV disease
progression or death, toxicities, the change in CD4 cells, and
plasma HIV-1 RNA concentrations in a subset of study sub-
jects were evaluated. Measurements of CD4 counts at baseline
(prior to the initiation of treatment) and at 8-week intervals
during a 40-week follow-up period for 60 and 8 selected sub-
jects are displayed in Table 1 in a multivariate format. Each
subject has his or her own row of data containing the values
of outcome variable on each of the six levels of the within-
subjects factor (0, 8, 16, 24, 32, and 40 weeks, which are denoted
by K1, K2, K3, K4, K5, and K6, respectively). Each record also
contains two identifying variables: ID, which identifies the
subject to which the record refers; J, which identifies the lev-
els of the between-subjects factor. The categorical variable
treatment is coded: 1 = zidovudine alternating monthly with
400 mg didanosine, 2 = zidovudine plus 2.25 mg of zalcitabine,
3 = zidovudine plus 400 mg of didanosine, and 4 = zidovudine
plus 400 mg of didanosine plus 400 mg of nevirapine.

For the data shown in Table 1, first we will carry out a con-
ventional repeated measures analysis of variance, which is
summarized in Table 2. According to this analysis, the classical

F-test statistic gives stronger evidence for effects of treat-
ment group, trials, and treatment × trial interaction. A 0.05
significance level is assumed throughout the paper. For the
between-subjects effect, F = 2.89, with 3 and 64 d.f. (p = 0.0327);
for the within-subjects main effect, F = 8.11, with 5 and 320
d.f. (p < 0.0001). Finally, for the interaction effect, results con-
tained in Table 2 show that F-value is 2.32, with 15 and 320 d.f.
(p = 0.0008), so that also is highly significant. Consequently, the
classical statistic indicates that the shapes of the profiles are
not the same across the four groups.

The three univariate tests we have just considered have
assumed normality and equal dispersion matrices for the four
groups under study. However, using Box’s M-test, as given in
Timm ([42], p. 134), the hypothesis of equal covariance matri-
ces is untenable. The �2-approximation criterion is 180.29 with
61 d.f. (p < 0.0001). When multisample sphericity is violated,
the mixed-model of Scheffé’s approach suffers from inflated
nominal levels and thus should be used with caution. In order
to circumvent the problems caused for the lack of homogene-
ity of dispersion matrices, the MBF procedure is a good choice,
since it becomes more conservative in these cases. A part of
the results generated by SAS/IML program appears in Table 3.

To produce the previous results the following program
statements were specified:

DATA DATARECORDED; INPUT GROUP Y1 Y2 Y3 Y4 Y5 Y6;
CARDS;

PROC IML;
USE DATARECORDED;
NDV=1; /*NUMBER OF DEPENDENT VARIABLES*/
TESTOMNI=1; /*‘1’ OMNIBUS TESTS, ‘0’ NO OMNIBUS TESTS*/
TESTGROUPS=1; /*‘1’ GROUPS PAIRWISE CONTRASTS, ‘0’ NO

GROUPS PAIRWISE*/
TESTTIME=1; /*‘1’ TRIALS PAIRWISE CONTRASTS, ‘0’ NO TRI-

ALS PAIRWISE*/
TESTINTERAC=1; /*‘1’ MULTIPLE INTERACTION CONTRASTS,

‘0’ NO CONTRASTS*/
TESTDEPVAR=1; /*‘1’ UNIVARIATE TEST OF EACH DEPENDENT

VAR, ‘0’ NO TEST*/
RUN MBF;

According to the results included in Table 3, it can be appre-
ciated that the subject’s mean levels are significantly different
among the four treatments (F = 3.32 with 2.35 and 47.51 d.f.,
p = 0.0373). Also is evident that the within-subjects main effect
is highly significant (F = 3.95 with 5 and 38.82 d.f., p = 0.0054).
However, it is important to note that there is not a significant
difference between the response patterns for the groups over
time; in other words, there is some evidence that the groups do

not respond differently during the first 40 weeks of follow-up
(F = 1.72 with 13.16 and 108.31 d.f., p = 0.0666). Consequently,
one could no reject the null hypothesis at the 5% level of sig-
nificance.
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Table 3 – Summary of multivariate MBF analysis

Hypotheses Wilks’s � d.f.Wa FMBF-value d.f.Rb p-Value

Groups 0.86 (1, 2.35, 47.51) 3.32 (2.35, 47.51) 0.0373
Trials 0.66 (5, 1.00, 38.82) 3.95 (5.00, 38.82) 0.0054
Groups × trials 0.62 (5, 13.16, 108.31) 1.72 (13.16, 108.31) 0.0666

a Degrees of freedom corresponding to Wilks’s � criterion.
b Degrees of freedom corresponding to Rao’s F-approximation.

Table 4 – Hochberg’s adjusted p values for all possible pair-wise differences among the levels of the between-subjects
and within-subjects factors

Test d.f.1 d.f.2 FMBF p-Value H-adjusteda Decision

Pair-wise contrasts of the group
J1–J4 1 23.84 8.56 0.0074 0.0445 Reject
J1–J3 1 14.82 7.16 0.0174 0.7279 Retain
J1–J2 1 21.31 5.04 0.0355 0.7279 Retain
J2–J4 1 33.15 1.35 0.2536 0.7279 Retain
J2–J3 1 23.08 0.66 0.4244 0.7279 Retain
J3–J4 1 31.13 0.12 0.7279 0.7279 Retain

Pair-wise contrasts of the trial
K1–K2 1 56.02 16.37 1.6E−4 2.4E−3 Reject
K1–K3 1 43.72 13.11 7.5E−4 0.0106 Reject
K3–K6 1 24.17 13.18 1.3E−2 0.0172 Reject
K2–K6 1 33.49 10.80 2.3E−2 0.0286 Reject
K3–K5 1 34.57 8.69 5.7E−2 0.8240 Retain
K1–K4 1 44.34 7.42 9.1E−2 0.8240 Retain
K2–K5 1 48.77 6.95 0.0112 0.8240 Retain
K3–K4 1 33.90 7.18 0.0113 0.8240 Retain
K4–K6 1 25.70 6.40 0.0179 0.8240 Retain
K2–K4 1 53.23 4.23 0.0446 0.8240 Retain
K1–K5 1 45.90 2.75 0.1041 0.8240 Retain
K4–K5 1 45.60 2.69 0.1076 0.8240 Retain
K5–K6 1 32.56 2.21 0.1464 0.8240 Retain
K1–K6 1 40.06 0.56 0.4578 0.8240 Retain
K2–K3 1 51.54 0.50 0.8240 0.8240 Retain
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J, levels of the between-subjects factor; K, levels of the within-subjec
a Hochberg’s adjusted p values.

After the overall null hypotheses referring to the groups
nd trials are rejected, the next step in the analysis is to decide
hich population means differ. As discussed above, both

he pair-wise comparison tests for between-subjects marginal
eans and pair-wise comparison tests for measures repeated
arginal means are affected by unequal covariance matrices

cross the grouping factor. However, it is possible to obtain
obust tests for the pair-wise comparison hypotheses by using
he MBF procedure and fitting the p values in step-up fashion
or controlling the FWE. For pair-wise contrast and tetrad con-
rast, it can be verified that the MBF procedure and Johansen
9] test as given in Lix and Keselman [8] and Lix et al. [43] are
quivalent; however, this would not be the case for K > 2.

Given that the null hypothesis of parallel profiles for groups
s not rejected at 5% level significance, the researchers may
verage over trials and over groups, respectively, to test pair-
ise contrast on group means and repeated measures means.
he program generates automatically all possible pairs among
he levels of the between-subjects and within-subjects factors.
his part of the results has been included in Table 4.

For all possible contrast in between-subjects marginal
eans, the results reported in Table 4 show that applying
tor.

Hochberg’s sequentially rejective Bonferroni procedure one
comparison is significant controlling FEW at a level no more
0.05: J1 versus J4. On the other hand, note that for the within-
subjects marginal means, four comparisons are declared sig-
nificant: K1 versus K2, K1 versus K3, K3 versus K6, and K2 versus
K6. Because the interaction effect resulted no significant at 5%,
the tetrad contrasts involving pairs of levels of two factors has
not been printed in Table 4. However, a significant result would
not need additional code lines to produce all possible interac-
tion contrasts.

5. Conclusion

The basic purpose of this paper was to extend the MBF
procedure for testing omnibus effects and multiple contrast
hypotheses related to these effects, to make available a pro-
gram written in the SAS/IML language in order to implement

this procedure, and to illustrate the application of the com-
puter program using data for a design grouped measures
repeated. Previous studies had revealed that the MBF proce-
dure was generally robust (i.e., insensitive) to violations of
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multisample sphericity and to lack of normality of the data
in unbalanced designs similar to that employed in the current
work [16]. To date, the performance of that approach had been
restricted to the examination of robustness in a between by
within subjects repeated measures design and in a two-group
multivariate design. Nonetheless, this approach may also be
applied to a variety of research designs using a general lin-
eal model to define the hypotheses of interest. In particular,
independent and correlated groups designs containing one or
more dependent variables.

Adopting the approach presented in this paper, one must
keep in mind the limits of the procedure. Specifically, it should
be noted that the MBF procedure assume complete measure-
ments for all subjects, which represents the main limitation
of this procedure in longitudinal settings. In many studies,
however, those researchers who do not have complete mea-
surements on all subjects across time can use the procedure
confining their attention to those complete vectors or by using
the idea of multiple imputation, which has been incorporated
into widely available software. Multiple imputation can be
used with any kind of data and any kind of analytic proce-
dure, however, some assumptions must be satisfied to have
unbiased and efficient estimators (see [44]). Other limitations
to be noted are that the MBF procedure it is not implemented
in the major statistical packages and does not allows users to
accommodate time-dependent covariates.

In conclusion, in spite of the fact that these limitations
might dissuade potential users from using this method, we
believe that the researchers should be comfortable using the
MBF procedure to analyze longitudinal data, specially under
conditions that are not optimal for the mixed model (e.g.,
when fitting a correct model requires many parameters and
sample sizes are small), since they need neither to model their
data nor to rely on methods that typically selected an incor-
rect covariance structure, as noted by Keselman et al. [45] and
Kowalchuk et al. [46].
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